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Abstract

Editing illumination in long videos with complex dynamics has significant value in
various downstream tasks, including visual content creation and manipulation, as
well as data scaling up for embodied AI through sim2real and real2real transfer.
Nevertheless, existing video relighting techniques are predominantly limited to
portrait videos or fall into the bottleneck of temporal consistency and computation
efficiency. In this paper, we propose TC-Light, a novel paradigm characterized
by the proposed two-stage post optimization mechanism. Starting from the video
preliminarily relighted by an inflated video relighting model, it optimizes appear-
ance embedding in the first stage to align global illumination. Then it optimizes
the proposed canonical video representation, i.e., Unique Video Tensor (UVT),
to align fine-grained texture and lighting in the second stage. To comprehensively
evaluate performance, we also establish a long and highly dynamic video bench-
mark. Extensive experiments show that our method enables physically plausible
relighting results with superior temporal coherence and low computation cost. The
code and video demos are available at https://dekuliutesla.github.io/tclight/.

1 Introduction

Lighting and its interaction with both real and synthetic environments fundamentally shapes how
humans—and embodied agents—perceive the world. The ability to relight camera-captured image
sequences, especially in complex, highly dynamic scenes, is invaluable for a range of downstream
applications, spanning from filmmaking [47] to augmented reality [34]. Crucially, this capability also
benefits embodied AI: by adapting the illumination distribution in video while preserving intrinsic
image details, it helps bridge the sim-to-real gap and enable real-to-real transfer, thus unlocking
access to massive high-quality data that is essential for scaling up embodied intelligence.

Despite its importance, video relighting remains a highly challenging problem, particularly when
camera motion is highly dynamic and foreground objects frequently enter and exit scenes, as
shown in Fig. 1. Most existing relighting techniques [58, 34, 22, 46, 28, 55] are tailored for static
images. As shown in Sec. 4.2, naively inflating them to a video model with existing zero-shot
strategies struggles to balance the consistency and quality. Moreover, the considerable training cost
and scarcity of video lighting datasets hinder fine-tuning a pretrained model for this task. Besides,

∗Correponding author.

Preprint. Under review.

https://dekuliutesla.github.io/tclight/


R
el

ig
ht

ed
So

ur
ce

R
el

ig
ht

ed
So

ur
ce

R
el

ig
ht

ed
So

ur
ce

A busy urban street scene, …, a warm, 
sunny day

Magic lit, sci-fi RGB glowing, studio 
lighting(a)

…, The room is well lit by sunshine from 
window

A busy urban intersection, snow,
      winter. The sky is clear and blue(b)

At home, living room, a clean and 
organized workspace, realistic

…, The sky is clear, suggesting a bright, 
sunny day(c)

Figure 1: Relighting results on long videos under various dynamic scenes, averaging 256 frames per
clip. Though the video involves frequent changes of foreground objects (row (a)), highly dynamic
camera motions (row (b)), the TC-Light realizes consistent and physically plausible relighting results.
Row (c) also shows its potential to mitigate the sim2real gap for synthetic renderings.

though video relighting models are emerging, they are either restricted on portrait video [57, 9, 6], or
burdened by considerable computation overhead [60, 16] on long video, as validated in Sec. 4.2.

To address the limitations outlined above, we propose TC-Light. We utilize the SOTA image
relighting model IC-Light [58] as the baseline, and inflate it to a video model in a zero-shot manner
with incorporation of our proposed decayed multi-axis denoising. It provides a preliminary video
relighting result. The core innovation of TC-Light lies in a two-stage post-optimization framework
that substantially improves temporal consistency. The first stage introduces per-frame appearance
embedding to compensate for exposure discrepancy. It is optimized with photometric loss against the
preliminarily relighted video and a flow-based loss between adjacent frames. This enforces global
illumination consistency and facilitates consequent optimization. The second stage compresses the
output to a canonical representation, i.e., Unique Video Tensor (UVT), according to priors including
optical flow and depth of the source video. UVT is then optimized by minimizing the warping error
across decompressed frames while aligning the content with the first stage result. As shown in Tab. 2,
our optimization procedure is extremely efficient and introduces minimal VRAM overhead.

To comprehensively assess the effectiveness of our model, we introduce a challenging benchmark
tailored for complex and highly dynamic scenes. It comprises 58 videos of averagely 256 frames
per clip, spanning both indoor and outdoor environments, realistic and synthetic settings, and a
wide range of lighting and weather conditions. Extensive experiments demonstrate that our method
achieves high-quality, temporally consistent video relighting while maintaining low computational
overhead, highlighting its strong potential for downstream applications such as embodied AI. Our
main contributions are as follows:
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• A novel optimization-based video relighting paradigm for long videos with high and compli-
cated dynamics, significantly improving the temporal consistency of the relighting result.

• We establish a new long-video relighting benchmark characterized by high motion dynamics
and broad scene diversity, covering various environments and data domains.

• Extensive experiments validate that our method achieves SOTA performance in producing
temporally consistent, naturally relighted videos with minimal computational cost.

2 Related Work

2.1 Learning-based Illumination Editing

Over the past few years, deep neural networks have become one of the main forces behind re-
search in the field of illumination control. Pioneering works [53, 40, 42, 12] train convolutional
encoder–decoder networks on light-stage data. The learned prior knowledge enables models to relight
a portrait according to the specified light conditions. More recently, large diffusion-based generators
have gained popularity for illumination editing. LightIt [31] explicitly conditions the diffusion process
on estimated shading and normal maps, giving fine-grained lighting control ability, while SwitchLight
[28] incorporates a physics-guided architecture to simulate light-surface interactions better. [59, 4]
leverage video foundation models to generate realistic lighting variations over a static image. IC-Light
[58], the current state of the art, learns illumination mixture and decomposition from a large quantity
of data. Building on these advances in image relighting, video relighting has started to gain traction.
[57, 9] learns to disentangle light and intrinsic appearance on portrait videos. [6] represents talking
faces as relightable NeRFs guided by predicted albedo and shading features. Extending IC-Light,
Light-A-Video [60] introduces zero-shot cross-frame attention modification, while RelightVid [16]
trains a temporally inflated IC-Light with a carefully designed video relighting dataset. However,
these methods are either restricted to portrait scenarios or struggle with computational efficiency on
long videos. In contrast, our model delivers high-quality relighting with strong temporal consistency
and low computation cost, even in complex and highly dynamic scenes.

2.2 Diffusion-based Video Editing

The diffusion model [19] has become the go-to model for visual domain transfer and content editing.
Based on training paradigms, recent advancements can be grouped into three categories: (i) training-
based models extend pretrained image diffusion models with temporal layers and are trained on
large-scale video datasets, such as [36, 8, 39, 37, 44, 56]. CCEdit [17] and FlowVid [35] further
integrate depth and flow cues for improved consistency and control. (ii) training-free models mainly
rely on cross-frame attention to enforce temporal coherence. TokenFlow [18] and FLATTEN [11]
guide attention using estimated optical flow. RAVE [23] enhances latent interactions by denoising
over a reorganized latent grid, while Slicedit [10] uses spatiotemporal slices to inject motion priors.
VidToMe [33], on the other hand, exploits temporal redundancy through token merging and unmerging.
(iii) one-shot-tuned models typically learn a canonical video representation in a few iterations and
propagate its edits across frames. StableVideo [7] learns to represent video as a foreground and
background atlas. CoDeF [41] learns a hash table and decoding MLP to map frames to a single
canonical image. Video-3DGS [51] adapts deformable 3DGS [25] to model input video. Our method
combines (ii) and (iii) and proposes an explicit, compact, and efficient canonical representation, i.e.,
Unique Video Tensor. It enables optimization to be finished within several minutes, which is much
faster than 10-30 minutes cost [51] of CoDF and Video-3DGS. Our method also inherits the diffusion
model design from training-free algorithms to reduce overall memory and time cost, enabling the
processing of long videos.

3 Method

3.1 Preliminaries

Task Setting. As shown in Fig. 2, we take RGB video as input. The axes of the video space-time
volume are denoted by (x, y, t), where xy planes correspond to video frames and yt planes are defined
as spatiotemporal slices [10]. Since the camera motion is highly dynamic, the target illumination
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Figure 2: TC-Light overview. Given the source video and text prompt p, the model tokenizes input
latents in xy plane and yt plane seperately. The predicted noises are combined together for denoising
(cf. Sec. 3.2). Its output then undergoes two-stage optimization to enhance temporal consistency of
illumination and texture, which are respectively detailed in Sec. 3.3.1 and Sec. 3.3.2.

can no longer be simply appointed by a static image or an HDR environment map. Due to superior
flexibility and operability, we use textual prompts as the control signal and relight the entire frame.

Latent Diffusion Models (LDMs). Denoising Diffusion Probabilistic Models (DDPMs) [19] are a
class of generative models that aim to recover target data distribution through an iterative denoising
process. Due to the high computational cost of operating directly in pixel space, LDMs [45, 48, 50]
perform diffusion in a lower-dimensional latent space. Given a clean image x0, and a pretrained
autoencoder {E(·),D(·)}, LDMs first encode the image into latent space z0 = E(x0). The forward
diffusion process then gradually corrupts z0 with Gaussian noise ϵ over time steps τ = 1, ..., T

zτ =
√
ατz0 +

√
1− ατ ϵ, (1)

where {ατ} is a monotonically decreasing noise schedule. The reverse process begins from pure
noise zT ∼ N (0, I). With guidance from control signal (image, text, depth, etc) c, the trained
UNet [49] ϵθ estimates the noise direction and progressively removes the noise from zT . After the
final denoising step, the estimated clean latent ẑ0 is decoded by D(·) to obtain the generated image
x̂0 = D(ẑ0), which approximates the training distribution.

3.2 Lifting Image Diffusion Model to Video Space

Considering outstand ability in physical plausibility and intrinsic property preservation, we adapt
IC-Light [58] into a zero-shot video diffusion model. Concretely, we (i) enhance its diffusion blocks
to capture spatiotemporal dependencies and (ii) introduce consistency prior from original frames. For
(i), we apply the token merging and unmerging technique of VidToMe [33] to self-attention blocks. It
divides the video frames into chunks and applies intra-chunk local token merging and inter-chunk
global token merging, enabling short- and long-term consistency. The derived model ϵθ serves as the
basis of (ii). Since it reduces the token count fed to the self-attention module, the computation cost is
significantly decreased. For full details, please refer to the original VidToMe paper [33].

For (ii), we propose decayed multi-axis denoising. Similar to Slicedit [10], the denoiser has two
components with shared weights ϵxyθ (·, p) that tokenizes each frame and merges tokens from local
temporal slots, while ϵytθ (·, “ ”) tokenizes the yt planes (cf. Sec. 3.1) and merges tokens from local
image width slot. Note that ϵxyθ conditions on target prompt p, while ϵytθ takes empty prompt “ ” as
input (making the denoiser unconditional). The noises separately predicted by two parts according to
the same input latents are combined together [10]
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ϵVθ (·, p) =
√
γϵxyθ (·, p) +

√
1− γϵytθ (·, “ ”), (2)

where hyperparameter γ ∈ [0, 1] balances effect from ϵytθ . However, the unconditional ϵytθ would
overly biases texture and lighting toward the source video, and therefore lead to unnatural relighting
results, as validated in Fig. 3 and Fig. 4. To alleviate this problem, we replace γ with a timestep-
dependent γτ that exponentially decays during denoising. To further align predicted noise from ϵytθ to
that of ϵxyθ , we use Adaptive Instance Normalization (AIN) [20] to adjust feature statistics

ϵVθ (·, p) =
√
γτ ϵ

xy
θ (·, p) +

√
1− γτ ϵ̂

yt
θ (·, “ ”), (3)

ϵ̂ytθ (·, “ ”) = σϵxy
θ

(
ϵytθ (·, “ ”)− µϵyt

θ

σϵyt
θ

)
+ µϵxy

θ
, (4)

where µ∗ and σ∗ are the channel-wise mean and standard deviation of each frame. This design
preserves motion guidance from the source video while reducing unwanted texture and lighting bias,
as validated by ablation studies in Sec. 4.3. The output denoised video is denoted as {It}.

3.3 Post Optimization for Temporal Consistency

Although the video diffusion extension in Sec. 3.2 has introduced spatial-temporal awareness and
motion prior from source video, noticeable illumination and texture flicker persist. To efficiently
remove these artifacts, we introduce a two-stage post-optimization framework, as illustrated in parts
(b) and (c) of Fig. 2.

3.3.1 Stage I: Exposure Alignment

As shown in part (b) of Fig. 2, the first stage introduces a per-frame appearance embedding Et to
compensate for exposure misalignment between adjacent frames. Inspired by [26], we model Et

as a 3× 4 affine transformation matrix, initialized to the identity and optimized via Adam [29]. Its
supervision combines a photometric term with a flow-warp alignment term using hyperparameter λe

Lexposure = (1− λe)Lphoto

(
Ĩt, It

)
+ λeL1

(
Ĩt ⊙Mt,Warpt+1→t

(
Ĩt+1

)
⊙Mt

)
, (5)

where the homogeneously transformed pixel color Ĩt (x, y) = Et [It (x, y) |1]T . The photometric loss
Lphoto is the weighted sum of L1 loss and D-SSIM loss [26], ensuring the transformed frame retains
its original content and structure. The second term warps the next frame back to the current timestamp
t, according to forward and backward flows Ffwd,t and Fbwd,t estimated through MemFlow [14]
or provided by the dataset. Then it applies an L1 penalty L1 to align their exposures. To mask out
regions with unreliable flow or occlusion, we apply a soft mask Mt

Mt = sigmoid (β (ξflow − Eflow))⊙ sigmoid (β (ξrgb − Ergb)) , (6)

Eflow = Norm
(
Fbwd,t +Warpt−1→t (Ffwd,t−1)

)
, Ergb = |It −Warpt+1→t (It+1) |. (7)

Here, β is a constant scaling factor, ξflow and ξrgb are thresholds set from the statistics of error map
Eflow and Ergb. This soft mask is also applied in the second stage of optimization. As shown in
Tab. 3, soft masking outperforms the hard one in both temporal consistency and prompt alignment.

3.3.2 Stage II: Optimization over Unique Video Tensor

In the second stage, we refine illumination and texture details. Compared with vanilla video, its
canonical representation can incorporate spatial-temporal priors and facilitate consistency [41, 51].
But popular NeRF or 3DGS are too complex and costly for learning (cf. Sec. 2.2). Instead, we
compress the video to a one-dimensional RGB vector of shape (N, 3), as shown in part (c) of Fig. 2.
Specifically, we define a d-dimensional index κ(x, y, t) for each pixel based on priors extracted
from the source video. An example index could be [22, 127, 0, 255], where the first element is flow
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Table 1: Datasets [38, 15, 52, 13, 2, 27, 32, 24] contained in established benchmark. Nseq. and
N̄frames denote number of sequence and average frames. C, F, D, S respectively denote RGB image,
Optical Flow, Depth, Instance Segmentation. Notably, AgiBot here denotes AgiBot Digital World.
Due to lacking of extrinsics, its depth is indeed not applicable. Only DRONE is self-collected data.

Datasets SceneFlow CARLA Waymo NavSim AgiBot DROID InteriorNet SCAND DRONE

Agent Vehicle Vehicle Vehicle Vehicle Robot Robot Robot Robot Drone
Synthetic ✓ ✓ ✓ ✓
Modality C,F,D,S C,D,S C C C C C,D,S C C
Nseq. 4 8 5 5 8 12 5 6 5

N̄frames 300 208 198 250 305 243 300 289 213
Width 960 960 960 960 640 960 640 960 1280
Height 512 536 640 536 480 536 480 536 720

ID (grouping pixels with shared optical flow), and the rest are 8-bit quantized RGB values. It is
also allowed to extend this 4-element index to more elements with voxel coordinate (from depth
projection) or any other cues that indicate spatial–temporal similarity and locality. All pixels with
identical κ are gathered via averaging to form one element of the one-dimensional vector, where N is
the number of unique κ. Take the source video {Iint } as an example, the gathering and scattering
operations are formulated as

U (κn) = Avg
({

Iint (x, y) |κ(x, y, t) = κn

})
, Iint (x, y) = U (κ(x, y, t)) , (8)

where U is referred to as the Unique Video Tensor (UVT). With an appropriate definition of κ, the
scattered Iint (x, y) reconstructs the original Iint (x, y) with minimal information loss, as validated in
Tab. 4. For relighting, the ideal edited video frames must preserve consistent motion and intrinsic
image details with the source; thus, they share the same index tensor κ for UVT representation.
Accordingly, we compress the first-stage output Ĩt (x, y) into Ũ via Eq. (8), which then serves as
the primary optimization target. This formulation not only facilitates optimization but also naturally
embeds spatial-temporal similarity priors (cf. Sec. 4.3). With CUDA parallelism, the gathering and
scattering process can be performed instantly. The optimization of Ũ is supervised by

Lunique = λtvLtv

(
Ĩt
)
+ (1− λu)LSSIM

(
Ĩt, Ĩt

)
+

+λuL1

(
Ĩt ⊙Mt,Warpt+1→t

(
Ĩt+1

)
⊙Mt

)
,

(9)

where Ĩt (x, y) = Ũ (κ(x, y, t)), and λtv and λu ∈ [0, 1] balance the loss terms. The total variation
loss Ltv suppresses noise. Notably, Eq. (9) applies SSIM loss instead of photometric loss. This
leaves space to fine-grained appearance and illumination adjustment without altering image structure.
Finally, the optimized Û is used to reconstruct Ît(x, y) according to Eq. (8) as the final output.

4 Experiments

4.1 Experiment Setting

Implementation Details. Following IC-Light [58], we apply T = 25 sampling steps and a classifier-
free guidance scale of 2.0. When inflated to video model with VidToMe [33], the local and global
token merging ratios are 0.6 and 0.5, respectively, to accommodate high video dynamics. In our
decayed multiaxis denoising strategy, the initial γτ is set to 0.2 and decays exponentially to 0.002
until the final sampling step. For the post-optimization stages, we use Adam [30] as optimizer and run
35 epochs in the first stage and 70 in the second with a batch size of 16, ensuring fast yet sufficient
convergence. κ(x, y, t) mainly contains quantized RGB and estimated masked flow, and optionally
depth if provided. Emperically, the weighting coefficients λtv is set to 0.01, λe and λu are set to 0.8.
Following [25], the learning rate in the first stage decays from 0.01 to 0.001, while the second stage
uses a fixed learning rate of 0.05. Additional details are included in the Appendix.

Dataset. To comprehensively evaluate the generation capability, we collect video clips with high
motion dynamic and broad scene diversity. This benchmark, as detailed in Tab. 1, covers scenarios
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Figure 3: Qualitative comparison of results. The proposed TC-Light avoids unnatural relighting
like Slicedit [10] and COSMOS-Transfer1 [3] in (a) and blurring like [3] in (b), or inconsistent
illumination like per-frame IC-Light [58] and VidToMe [33] as highlighted by the red squares.

like autonomous driving, robot manipulation, and navigation, as well as drone flight. It includes data
collected from synthetic and realistic environments under various weather conditions. Each clip is
a long video with high dynamics and on average 256 frames, making it extremely challenging. To
obtain edit prompts, we use some prompts from [58] and generate others using COSMOS [1].

Metrics. Following prior works [43, 33, 23, 56], we assess the relighting performance along following
four dimensions: (i) Temporal consistency is quantified via motion smoothness (Motion-S) [21] and
structural warping error (Warp-SSIM). Motion-S evaluates the continuity and physical plausibility
of motion in the edited sequence, whereas Warp-SSIM computes the SSIM between a frame and its
warped neighbors using flow from RAFT [54]. (ii) Textual alignment is measured by average CLIP
embedding similarity between the text prompt and all edited frames (CLIP-T). (iii) User preference is
evaluated by a study on 19 randomly selected videos and 65 valid submissions collected. Participants
choose their preferred relighting results among our method and established baselines, from which
we derive the Bradley–Terry preference rate (User-PF) [5]. Additional details are included in the
Appendix. (iv) Computation efficiency is reported in terms of runtime speed (FPS) and peak GPU
memory consumption (VRAM) during editing. All experiments are conducted on a 40GB A100 GPU.
Additionally, to appraise the reconstruction quality of UVT, we report average PSNR, SSIM, and
LPIPS between the original and reconstructed frames.

Baselines. We benchmark our approach against several recent state-of-the-art techniques, whose code
is publicly available at the time of writing. These include per-frame IC-Light (denoted as IC-Light*)
and its video extensions, Light-A-Video [60] and RelightVid [16]. We also implement two IC-Light
variants by incorporating leading zero-shot video editing methods: VidToMe [33] and Slicedit [10].
For fairness, we disable the image downsampling to 512× 512 resolution before the diffusion step in
Slicedit. In addition, we compare two advanced training-based methods—VideoDirector [56] and
COSMOS-Transfer1 [3]. For the latter, due to out-of-memory (OOM) issues when applying full
multimodal control on long videos, we employ only its edge branch, which offers a favorable balance
between preserving image details and adhering to relighting prompts.

4.2 Comparison with SOTA

Quantitative and qualitative comparisons with state-of-the-art methods are reported in Tab. 2 and
Fig. 3, respectively. The result indicates that per-frame relighting (IC-Light*) follows prompts well
and produces physically plausible illumination, but the adapted illumination suffers from severe
flicker, as shown in columns (a) and (b) of Fig. 3. IC-Light would even randomly hallucinate
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Table 2: Comparison with existing methods. "OOM" here means the method is unable to finish the
task due to an out-of-memory error. For a fair comparison, the base models of VidToMe and Slicedit
are replaced with IC-Light here. Ours-light applies post-optimization to VidToMe, while Ours-full
further introduces decayed multi-axis denoising. Experiments are conducted on 40G A100. The best
and the second best of each metric are separately highlighted in red and blue.

Method Motion-S↑ WarpSSIM↑ CLIP-T↑ User-PF↑ FPS↑ Time(s)↓ VRAM(G)↓

IC-Light* [58] 94.52% 71.22 0.2743 10.97% 0.123 2075 16.49
VidToMe [33] 95.38% 73.69 0.2731 6.97% 0.409 626 11.65
Slicedit [10] 96.48% 85.37 0.2653 18.39% 0.122 2101 17.87
VideoDirector [56] OOM OOM OOM OOM OOM OOM OOM

Light-A-Video [60] OOM OOM OOM OOM OOM OOM OOM
RelightVid [16] OOM OOM OOM OOM OOM OOM OOM
Cosmos-T1 [3] 96.83% 83.47 0.2529 16.06% 0.101 2543 34.87

Ours-light 97.39% 88.53 0.2700 23.66% 0.359 771 14.36
Ours-full 97.80% 91.75 0.2679 23.96% 0.204 1255 14.37

non-existent objects in textureless regions (cf. column (c) of Fig. 3), further degrading consistency.
Extending IC-Light* with VidToMe [33] yields modest gains in temporal coherence but dramatically
lowers computation cost for long videos, so we adopt it as our primary baseline. Slicedit [10]
significantly suppresses flicker and hallucinations, yet its computation overhead exceeds that of
IC-Light*. Besides, its output remains overly biased by the original appearance of the source video.
As a result, it produces unnatural relighting in many cases, as shown in column (a) of Fig. 3.

We also evaluated the T2V-model-based video editing approach [56] and concurrent video relighting
techniques [60, 16]. Unfortunately, they all failed on long clips due to OOM errors caused by high
computation resource demands. For the same reason, Cosmos-Transfer1 [3] can only operate in
single-modality mode under GPU constraints, yet still requires over 30 GB GPU memory and more
than 30 minutes per clip. Moreover, on video with high dynamics, it suffers from more severe blur
and loss of details, as shown in columns (a) and (b) of Fig. 3. These failures are likely because
Cosmos-Transfer1 is limited to the data domain of its training data, which contains less varied,
moderately dynamic videos.

In contrast, our TC-Light first enables physically plausible relighting on long videos with high
dynamics, while outperforming all baselines in temporal consistency and preference rate by a large
margin, as shown in Tab. 2. The light version adds only 2.4 minutes and 2.7 GB of VRAM overhead
compared to the VidToMe baseline, while faithfully preserving object identity, albedo, and adherence
to text prompts, as shown in Fig. 3. Incorporating our decayed multi-axis denoising further enhances
temporal coherence, with a modest trade-off in efficiency and quality. Limited by page, we provide
additional visualization and performance of different scenarios types in the Appendix.

4.3 Ablation

This section analyzes the contribution of each component in our model. The first stage optimization,
as shown in Tab. 3 and Fig. 4, markedly boosts consistency by aligning cross-frame exposure. The
6-7th rows of Tab. 3 also illustrate that, initializing UVT optimization from the first-stage results
converges more efficiently than directly optimizing UVT for the same overall epochs. The second
stage optimization, as shown in Tab. 3, further reinforces temporal coherence. Tab. 4 confirms that
UVT can compress the source video with near-zero loss, which underpins our design in Sec. 3.3.2.
Using UVT as the second-stage target not only boosts consistency but also cuts computational
overhead. Additionally, replacing a hard mask with a soft mask consistently improves both Warp-
SSIM and CLIP-T metrics, demonstrating its importance. Incorporating the depth cues alongside
UVT yields a more compact representation (also in Tab. 4), which aids illumination alignment and
release computation burden. In contrast, instance segmentation masks provide no clear benefit and
are thus omitted from the final implementation.

For the diffusion module, multi-axis denoising notably enhances temporal consistency. However, it
tends to inherit appearance distribution from the source video, causing drift from the target prompt
and sometimes unnatural lighting, as shown in Fig. 4. The introduced AIN and weight decay mitigate
these issues, achieving a promising balance between consistency and faithful prompt alignment.
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Table 3: Ablation over module component. The experiments here are conducted on CARLA [15]
and the Interiornet [32] subset, which both provide depth and instance mask as priors. There are 13
sequences in total and 254 frames on average, covering scenes of indoor and outdoor scenarios. The
gray row denotes modification that is aborted and not included in the following experiments.

Method Motion-S↑ WarpSSIM↑ CLIP-T↑ FPS↑ Time(s)↓ VRAM(G)↓

Baseline 94.51% 77.60 0.2871 0.693 364 10.63
+1st Stage 95.71% 81.29 0.2868 0.651 388 11.33
+2nd Stage(video) 96.40% 90.58 0.2876 0.552 460 13.53
+2nd Stage(UVT) 96.44% 91.04 0.2866 0.563 449 11.81
+soft mask 96.44% 91.05 0.2868 0.559 452 11.81
from scratch(UVT) 96.30% 90.65 0.2866 0.552 458 12.40
+depth 96.56% 91.12 0.2863 0.569 444 11.57
+instance 96.50% 91.01 0.2851 0.545 462 11.67

+multi-axis 98.41% 95.52 0.2813 0.310 805 11.57
+AIN 98.38% 95.44 0.2832 0.310 805 11.57
+weight decay 97.75% 93.74 0.2865 0.310 805 11.57

Table 4: Ablation over Unique Video Tensor (UVT). Here, %Cmpr is the compression rate after
applying UVT on the source video. The subscripts “f” and “f+d” indicate that, besides color cues, the
UVT representation incorporates optical flow cues and both flow and depth cues, respectively.

Scene %Cmprf↓ SSIMf↑ PSNRf↑ LPIPSf↓ #Cmprf+d↓ SSIMf+d↑ PSNRf+d↑ LPIPSf+d↓

CARLA %39.2 0.9940 50.71 0.025 %29.2 0.9925 48.98 0.028
InteriorNet %49.0 0.9908 46.17 0.021 %12.8 0.9755 40.86 0.047

4.4 Limitation and Discussion

Despite achieving impressive results, our method is still limited by its base models. For instance, the
current version of IC-Light [58] still struggles to relight hard shadows or make large modifications to
low-light images. Similarly, since IC-Light is pretrained on 512 resolution and fine-tuned on 1024
resolution, our model struggles to preserve image details if the resolution is lower than 512. Besides,
since the optimization process relies on the optical flow estimation model, artifacts sometimes occurs
in textureless areas where flow becomes unreliable. Furthermore, the temporal consistency loss has
the tendency to smooth the texture of flickering areas, and therefore might sacrifice some details.
Though the proposed decayed multiaxis denoising alleviates the problem, developing a temporally
more consistent and computationally more efficient denoising strategy is desired in future work.

Baseline +1st Stage +2nd Stage +soft&depth +multi-axis +AIN&decaySource

Figure 4: Ablation on main module components. The experiment is conducted on one sequence of
the InteriorNet [32] subset, where the text prompt is "This video showcases a modern interior space,
which is dimly lit". The baseline here denotes VidToMe [33] in Tab. 2.
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5 Conclusion

In summary, we present TC-Light, a one-shot-tuned framework that delivers temporally consistent and
physically plausible relighting on long, highly dynamic videos. The optimization-based illumination
alignment provides a new paradigm for video relighting. Central to our approach is the Unique
Video Tensor—an explicit, canonical, and differentiable video representation that enables highly
efficient optimization. Over the established long video relighting benchmark, TC-Light achieves
state-of-the-art performance in both consistency and efficiency, making it particularly well suited for
sim2real and real2real data scaling in embodied AI.
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Figure 5: Qualitative results on additional long highly dynamic videos.

A Additional Experimental Results

Fig. 5 presents additional visualizations of our relighting results across a diverse range of scenarios.
Whether under nighttime or daytime conditions, in outdoor or indoor environments, or from aerial or
ground-level viewpoints, the proposed TC-Light method consistently produces temporally coherent
and physically plausible illumination edits, demonstrating strong generalization capabilities. Fig. 6
provides qualitative comparisons against state-of-the-art methods across additional scenarios. As
shown, our model effectively adheres to textual instructions while generating relighting results that
are both natural and temporally consistent.

We also provide corresponding quantitative evaluations on synthetic and real-world scenarios. As
reported in Tab. 5, performance on real-world scenes consistently exceeds that on synthetic ones.
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(a) ..., the room is well lit by sunshine 
from window.

(b) In Tokyo, distant sky. (c) The atmosphere is overcast, contri-
buting to the overall gloomy weather.

Figure 6: Additional qualitative comparison of results. The proposed TC-Light avoids unnatural
relighting like Slicedit [10] and COSMOS-Transfer1 [3] in (a) and (b), or temporal inconsistency like
per-frame IC-Light [58] and VidToMe [33] as highlighted by the red squares.

Table 5: Comparison on synthetic [38, 15, 2, 32] and realistic scenarios [52, 13, 27, 24]. The average
resolutions are respectively 794 × 503 and 960 × 555, while the frame numbers are 272 and 246.
"OOM" here means the method is unable to finish the task due to an out-of-memory error. Ours-
light applies post-optimization to VidToMe, while Ours-full further introduces decayed multi-axis
denoising. The best and the second best of each metric are separately highlighted in red and blue.

Synthetic Realistic
Method Motion-S↑ WarpSSIM↑ CLIP-T↑ Motion-S↑ WarpSSIM↑ CLIP-T↑

IC-Light* [58] 93.43% 66.02 0.2779 95.14% 77.13 0.2837
VidToMe [33] 94.61% 69.45 0.2776 95.82% 79.33 0.2815
Slicedit [10] 96.28% 84.90 0.2717 96.38% 88.89 0.2715
VideoDirector [56] OOM OOM OOM OOM OOM OOM

Light-A-Video [60] OOM OOM OOM OOM OOM OOM
RelightVid [16] OOM OOM OOM OOM OOM OOM
Cosmos-T1 [3] 96.31% 80.87 0.2537 96.78% 83.57 0.2659

Ours-light 97.02% 88.63 0.2707 97.46% 89.42 0.2816
Ours-full 97.36% 91.07 0.2695 97.90% 92.67 0.2792

This discrepancy likely arises from the training data of the video model Cosmos-Transfer1 [3] and
the foundational image model IC-Light [58], which are biased towards realistic scenes. Furthermore,
the higher resolution and richer textures of real-world data mitigate hallucinations in textureless
regions and help better preserve the intrinsic details of source frames for IC-Light. Such attributes
are particularly critical for the consistency of methods with comparatively limited temporal modeling,
namely, IC-Light* and VidToMe, which exhibit substantially higher Motion-S and WarpSSIM metrics
on real-world videos than on synthetic ones. In contrast, our approach attains state-of-the-art temporal
consistency across both scenario types while maintaining a favorable balance with prompt adherence.

B Details of Assets

In Tab. 6, we summarize the license and resolution for each subset. All source videos are resized and
center-cropped to their designated resolutions. Considering the computation source limitation, we

2https://waymo.com/open/terms/
3https://interiornet.org/
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Table 6: Licenses and video resolution of datasets [38, 15, 52, 13, 2, 27, 32, 24] contained in
established benchmark. Notably, AgiBot here denotes AgiBot Digital World. DRONE is our
self-collected subset. Sceneflow has no license, but is only allowed for research purposes.

Datasets SceneFlow CARLA Waymo NavSim AgiBot DROID InteriorNet SCAND DRONE

Width 960 960 960 960 640 960 640 960 1280
Height 512 536 640 536 480 536 480 536 720

License N/A CC-BY Custom2 CC BY-
NC-SA 4.0

CC BY-
NC-SA 4.0

Apache
-2.0 Custom3 CC0 1.0 N/A

sample videos that contain over 600 frames to around 300 frames. The DRONE subset includes three
clips captured using our DJI Mini4 Pro and two additional clips obtained from DroneStock4, which
are released under the CC0 1.0 License. For AgiBot Digital World [2], where the robot’s head moves
in coordination with its body while performing tasks, relighting is performed from the head-mounted
camera view. For each scene of DROID [27], we apply relighting to both the static side camera and
the dynamic left wrist camera views. For Waymo [52] and NavSim [13], relighting is conducted
using the front-facing camera view.

This paper also benefits from the code of IC-Light [58] (Apache-2.0 License), VidToMe [33] (MIT
License), Slicedit [10] (MIT License), VideoDirector [56] (MIT License), Light-A-Video [60]
(Apache-2.0 License), RelightVid [16] (CC BY-NC-SA 4.0 License), and Cosmos-Transfer1 [3]
(Apache-2.0 License).

C Additional Implementation Details

For competing methods, we adopt the hyperparameters from their official implementations for
VideoDirector [56], Light-A-Video [60], RelightVid [16], and Cosmos-T1 [3]. We replace base
models of VidToMe [33] and Slicedit [10] with IC-Light [58], and therefore we align their classifier-
free guidance scale and diffusion sampling steps with those in [58]. Additionally, we set VidToMe’s
local and global token-merging ratios to 0.6 and 0.5, respectively, mirroring the setting of our
approach. For Slicedit, we adjust the weighting factor γ in Eq. (2) from the default 0.2 to 0.05 to
better balance temporal coherence and instruction adherence. All other hyperparameters remain at
their default values. The modified VidToMe serves as the baseline of our model design.

During implementation, each κ(x, y, t) comprises three components: (1) a per-pixel flow ID, (2)
a quantized RGB color, and, optionally, (3) a world-frame voxel coordinate. For (1), flow IDs are
derived from the optical flow estimated by the state-of-the-art MemFlow method [14] and the binary
mask obtained by thresholding the soft mask in Eq. (6) of the main paper (values > 0.5 are set
to 1; otherwise 0). In the initial frame, pixels receive unique flow IDs from 0 to HW − 1, where
H and W denote image height and width. In subsequent frames, a pixel inherits the flow ID of
its predecessor if connected by an unmasked flow; otherwise, it is assigned a new ID. This injects
motion priors into the UVT representation. For (2), we quantize RGB values to 7 bits, ensuring that
all pixels sharing the same UVT element differ by less than 2/255 in any channel. This constraint
mitigates erroneous flows that escape the mask and reinforces representation in regions exhibiting
view-dependent effects. For (3), when per-frame depth maps are available, they are reprojected into a
point cloud using the camera intrinsics and extrinsics to determine world-frame coordinates. This
point cloud is then voxelized at a specified voxel size, and each pixel’s voxel coordinate is appended
to κ(x, y, t), yielding a more compact representation of static regions. For the CARLA [15] and
InteriorNet [32] datasets, voxel sizes are set to 0.05 m and 0.02 m, respectively. Notably, dynamic
objects at different timestamps may spatially overlap in 3D, but they remain distinguishable by their
flow IDs and quantized RGB colors. Consequently, each object at each timestep is represented by a
distinct set of UVT elements, while the L1 temporal consistency loss preserves object identity across
frames.
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Figure 7: A screenshot of the user study.
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Figure 8: Results from user study with 65 valid submissions. The methods are arranged in alphabetical
order. This figure reports the frequency that each method is chosen as the first- and second-most
preferred video.

D User Study

We conducted an online user study with 78 anonymous participants, evaluating 19 randomly selected
video–text pairs from our datasets. The compared methods were IC-Light* [58], VidToMe [33],
Slicedit [10], Cosmos-Transfer1 [3], Ours-light, and Ours-full. A screenshot of the questionnaire
interface is shown in Fig. 7. For each question, methods were anonymized and relighted videos were
presented in random order; participants selected the two most preferred results. In compliance with
the NeurIPS Code of Ethics, each participant received a compensation of $0.70. Besides, we ensured
that all collected data remained confidential and was not disclosed to any institutions or individuals.

Since each video spanned 10–20 seconds, completing the questionnaire took on average 13.5 minutes.
Submissions requiring less than four minutes were deemed unreliable and excluded, yielding 65 valid
responses. Fig. 8 reports the frequency with which each method was chosen among the top two. Our
full model achieved the highest preference rate, while the light variant ranked second. Although
IC-Light* and VidToMe follow instructions well (cf. Tab. 2 of the main paper), their inferior temporal
consistency make them much less preferred by users. Finally, we computed Bradley–Terry preference
scores [5] as a comprehensive metric of user preference, as presented in the Tab. 2 of the main paper.

E Social Impact

Positive Impacts. The proposed TC-Light framework for long video relighting stands to benefit a
wide range of applications in both industry and research. First, by enabling consistent and physically
plausible illumination editing at low computational cost, it can substantially lower the barrier to
high-quality visual content creation, empowering independent filmmakers, educators, and artists to
produce compelling video narratives without access to specialized hardware. Second, the capability
to scale illumination-diverse training data through sim2real and real2real transfer can accelerate
progress in embodied AI—robots and autonomous agents exposed to rich, temporally coherent visual
environments may learn more robust perception and planning behaviors, thereby advancing safety and
reliability in human–robot interaction. Finally, by fostering more efficient video synthesis pipelines,
TC-Light may encourage energy-aware design practices in large-scale media processing systems,
contributing to reduced resource consumption and attendant carbon emissions.

Negative Impacts. Despite these benefits, improved video relighting carries potential risks if misused.
Enhanced realism in dynamic relighting could facilitate the creation of deceptive multimedia, includ-

4https://dronestock.com/
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ing deepfake videos that manipulate shadows and highlights to conceal tampering or impersonate
individuals, thereby eroding trust in digital media. Moreover, large-scale deployment of relighting
tools raises privacy concerns: adversarial actors might relight surveillance footage to obscure identi-
ties or fabricate altered event sequences. To mitigate these harms, we advocate for gated access to
pretrained models, integration of provenance metadata to flag relit content, and collaboration with
platform providers to monitor and throttle suspicious bulk relighting requests.
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