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Figure 1: Reconstruction and Novel View Synthesis results. In part (a), we extend VGGT to handle
dense multi-view inputs and incorporate an efficient global alignment, yielding highly accurate pre-
dictions. Part (b) demonstrates that eliminating redundant VRAM usage enables inference through-
put over 1000 images without compromising performance. The VGGT− here denotes VGGT with
the elimination of redundant intermediate features. Finally, part (c) illustrates that, with an appro-
priate joint pose and 3DGS optimization strategy, a photorealistic rendering can be realized.

ABSTRACT

We study the problem of applying 3D Foundation Models (3DFMs) to dense
Novel View Synthesis (NVS). Despite significant progress in Novel View Syn-
thesis powered by NeRF and 3DGS, current approaches remain reliant on accu-
rate 3D attributes (e.g., camera poses and point clouds) acquired from Structure-
from-Motion (SfM), which is often slow and fragile in low-texture or low-overlap
captures. Recent 3DFMs showcase orders of magnitude speedup over the tradi-
tional pipeline and great potential for online NVS. But most of the validation and
conclusions are confined to sparse-view settings. Our study reveal that naively
scaling 3DFMs to dense views encounters two fundamental barriers: dramati-
cally increasing VRAM burden and imperfect outputs that degrade initialization-
sensitive 3D training. To address these barriers, we introduce VGGT-X, incor-
porating a memory-efficient VGGT implementation that scales to 1,000+ images,
an adaptive global alignment for VGGT output enhancement, and robust 3DGS
training practices. Extensive experiments show that these measures substantially
close the fidelity gap with COLMAP-initialized pipelines, achieving state-of-the-
art results in dense COLMAP-free NVS and pose estimation. Additionally, we
analyze the causes of remaining gaps with COLMAP-initialized rendering, pro-
viding insights for the future development of 3D foundation models and dense
NVS. Our project page is available at https://dekuliutesla.github.
io/vggt-x.github.io/.
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1 INTRODUCTION

Novel View Synthesis (NVS) reconstructs a 3D scene from multi-view images to render photoreal-
istic novel views. Implicit representations like Neural Radiance Fields (NeRF) (Mildenhall et al.,
2021) set a new standard in rendering fidelity, while recent explicit 3D Gaussian Splatting (3DGS)
(Kerbl et al., 2023) revolutionizes the area by enabling realistic rendering with real-time speed.
Both families, however, typically require tens of minutes to train and depend on accurate initial-
ization from external sensors or reconstruction pipelines (e.g., COLMAP (Schönberger & Frahm,
2016)), which incurs expensive hardware or additional minutes-to-hours overhead (Li et al., 2025).

Recent 3D Foundation Models (3DFMs) offer a promising alternative by dramatically accelerating
components of the pipeline. For example, VGGT can infer camera poses and depth for 200 im-
ages in 10s (Wang et al., 2025a), and Anysplat produces 3DGS from 64 views in 5s (Jiang et al.,
2025a), suggesting orders-of-magnitude speedups over classic pipelines. Yet these methods are
largely demonstrated in sparse-view regimes (tens of images), leaving open the question: what
would happen if 3DFMs are applied to dense NVS?

This work investigates applying 3DFMs to dense NVS and identifies two central obstacles. First,
3DFM computation and memory cost increase dramatically with the number of views (e.g., VRAM
of VGGT rises from 5.6 GB to 40.6 GB when input rises from 20 to 200 views (Wang et al., 2025a)),
making direct dense inference of 3DGS properties infeasible on commercial GPUs. Second, even
when used as a drop-in replacement for traditional reconstruction pipelines like COLMAP, 3DFM
outputs exhibit higher noise levels. Such noise undermines the learning of initialization-sensitive
3D primitives and leads to significant degradation in rendering quality.

To remove the obstacles and explore the answer to the question, we take VGGT (Wang et al., 2025a)
as a representative 3DFM and pursue two directions. On the 3DFM side, we remove redundant
feature caching, reduce numeric precision, and adopt batched frame-wise operations to losslessly
scale VGGT inference to 1,000+ images (see part (b) of Fig. 1). On the 3DGS side, we study the
effect of initializing 3DGS with VGGT outputs. Tab. 4 shows substantial degradation under naı̈ve
initialization. We further investigate whether the mitigation strategy exists. We propose an effi-
cient adaptive global alignment under epipolar constraints to refine VGGT predictions. Besides, we
adopt MCMC-3DGS (Kheradmand et al., 2024) and joint pose optimization to increase robustness
to noisy initialization, along with a point-cloud initialization strategy through comparative analysis.
Through these approaches, we largely mitigate the fidelity gap and obtain state-of-the-art rendering
under COLMAP-free settings. We also analyze remaining discrepancies with COLMAP-initialized
training, including overfitting and generalization problems, and offer concrete directions for stronger
3DFMs and more robust NVS training.

In summary, our contributions are fourfold:

• We identify and analyze the key problems that prevent current 3DFMs from scaling to
dense NVS.

• We explore and reveal how the key problems can be alleviated by introducing VGGT-X, a
memory-efficient VGGT implementation combined with an adaptive global alignment and
3DGS training practices tailored to imperfect initialization.

• We analyze the residual gap to COLMAP-initialized pipelines and provide insights to
strengthen future 3DFMs and NVS training.

• Extensive experiments confirm our state-of-the-art performance in both pose estimation
and COLMAP-free NVS.

2 RELATED WORKS

2.1 NOVEL VIEW SYNTHESIS

Novel view synthesis (NVS) seeks to generate photorealistic images from novel viewpoints given
a set of input images captured from different perspectives of a 3D scene. This task fundamentally
relies on reconstructing a faithful 3D representation of the scene. A landmark in this field is Neural
Radiance Fields (NeRF) (Mildenhall et al., 2021), which employs multi-layer perceptrons (MLPs)

2



Preprint. Under review.

to implicitly encode scene geometry and appearance. Subsequent works have advanced NeRF along
multiple directions, including improved reflectance modeling (Verbin et al., 2022; Attal et al., 2023),
anti-aliasing techniques (Barron et al., 2021; 2022), and acceleration of both training and inference
(Zhang et al., 2023; Müller et al., 2022; Yu et al., 2021). More recently, 3D Gaussian Splatting
(3DGS) (Kerbl et al., 2023) has emerged as a powerful alternative, offering substantial efficiency
gains while preserving high rendering quality. Building on this foundation, recent research has ex-
tended 3DGS to large-scale scene reconstruction (Lin et al., 2024; Liu et al., 2024; 2025), compact
storage and transmission (Fan et al., 2024a; Lee et al., 2024), and artifact mitigation (Yu et al., 2024;
Ye et al., 2024; Radl et al., 2024). Despite these advances, NVS methods still require accurate cam-
era parameters, and 3DGS in particular remains highly sensitive to the quality of the initial point
cloud. Inaccurate poses or noisy geometry often result in visual artifacts and geometric misalign-
ments in the synthesized views.

2.2 3D FOUNDATION MODELS

3D foundation models aim to infer fundamental 3D attributes—such as camera parameters, point
clouds, depth maps, point tracks, or even neural radiance fields—directly from image collections.
Current approaches are broadly instantiated through two architectural paradigms: diffusion-based
models (Ho et al., 2020) and feed-forward ViT-based models (Dosovitskiy et al., 2021). Based on
input types, the 3D foundation models can be categorized into 4 types (Cong et al., 2025). (i) For
uncalibrated image pairs, DUSt3R (Wang et al., 2024b) and its successors (Leroy et al., 2024;
Fan et al., 2024b; Zhang et al., 2025a; Ye et al., 2025; Lu et al., 2025; Smart et al., 2024; Chen
et al., 2025) predict point clouds (with auxiliary properties such as confidence) within the coordi-
nate frame of the first camera. Through additional correspondence matching and reprojection loss
optimization, these local geometries can be aligned into a consistent global frame (Duisterhof et al.,
2025). (ii) For unordered multi-view image collections, models such as (Yang et al., 2025; Wang
et al., 2025a;c; Fang et al., 2025) employ inter- and intra-view cross-attention to directly produce
globally consistent poses and geometry. (iii) For image streams, models like Spann3R (Wang &
Agapito, 2025) and CUT3R (Wang et al., 2025b) predict next-frame geometry by leveraging current
features and temporal memory, while diffusion-based approaches (Team et al., 2025; Jiang et al.,
2025b; Xu et al., 2025) cast geometry estimation as a conditional generative process. (iv) For un-
calibrated sparse views, FLARE (Zhang et al., 2025b) adopts a cascaded, feed-forward pipeline
that first regresses camera poses and then conditions global geometry and appearance estimation.
Despite rapid progress, most existing models incur substantial computational overhead and exhibit
degraded performance when scaled to hundreds or thousands of images. Our study aims to address
this gap and provide new insights into the development of scalable 3D foundation models.

2.3 3D RADIANCE FIELD LEARNING WITH POSE OPTIMIZATION

To mitigate the dependence on accurate camera poses, recent NVS approaches have explored a va-
riety of strategies. A widely adopted solution is the joint optimization of camera parameters along-
side the neural radiance field, often complemented by multi-view correspondence losses (Wang
et al., 2021; Jeong et al., 2021). Methods such as NoPe-NeRF (Bian et al., 2023) and SPARF
(Truong et al., 2023) incorporate depth supervision, whereas (Bian et al., 2024; Huang et al., 2025b)
employ MLPs to regress pose updates, enhancing robustness and exploiting global scene context.
NeRF-based techniques further investigate strategies to mitigate sub-optimal convergence caused by
high-frequency positional embeddings (Lin et al., 2021; Chng et al., 2022; Xia et al., 2022). In the
context of 3DGS, MCMC-3DGS (Kheradmand et al., 2024) enhances robustness to initialization by
reformulating the Gaussian Splatting update mechanism, while (Fu et al., 2024; Chen et al., 2024; Ji
& Yao, 2025) perform incremental local geometry reconstruction and pose refinement for unposed
image sequences. More recently, approaches leveraging 3D foundation models or tracking mod-
els (Huang et al., 2025a;b; Shi et al., 2025) have been proposed to efficiently obtain high-quality
initializations of poses and geometry. Despite these advances, a notable performance gap remains
compared to COLMAP-initialized optimization, and scaling these methods to large image collec-
tions remains largely unexplored. Our work aims to advance this frontier, providing insights into
training photorealistic neural radiance fields from imperfectly registered poses and point clouds.
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Figure 2: Overall pipeline of our model.

3 METHOD

3.1 PRELIMINARY

3D Gaussian Splatting (Kerbl et al., 2023) models a 3D scene using a collection of ellipsoids
parameterized by 3D Gaussian distributions, i.e., G = {Gi | i = 1, . . . , NG}. Each Gaussian is as-
sociated with learnable attributes, including its center µi ∈ R3×1, covariance matrix Σi ∈ R3×3,
opacity σi ∈ [0, 1], and spherical harmonics (SH) features fi ∈ R3×16 for view-dependent appear-
ance modeling. The covariance matrix is further decomposed into a scaling matrix Si and a rotation
matrix Ri, such that Σi = RiSiSi

TRi
T . For a given pixel p, the color cp is obtained via alpha

blending. Given a ground-truth image I, the optimization of 3DGS is driven by the total loss Ltotal,
defined as the weighted combination of the L1 loss L1 and the D-SSIM loss LSSIM. To mitigate
under- or over-reconstruction, 3DGS employs a heuristic adaptive density control strategy guided
by the view-space position gradient ∇densify = ∂L/∂µi. Gaussians with gradients exceeding a
predefined threshold are either cloned or split. We refer readers to the original paper (Kerbl et al.,
2023) for additional details.

3DGS-MCMC (Kheradmand et al., 2024) improves 3DGS in both rendering fidelity and robustness
to noisy initialization. The key insight is that the optimization of 3DGS can be reformulated as a
Stochastic Gradient Langevin Dynamics (SGLD) update:

G ← G − λlr · ∇GEI∼I [Ltotal(G; I)] + λnoise · ϵ, (1)

where λlr and λnoise denote hyperparameters that control the learning rate and the magnitude of
stochastic exploration, respectively, and ϵ represents noise sampled for exploration. To mitigate the
dependency on precise initialization, we adopt 3DGS-MCMC as our baseline for NVS.

3.2 MEMORY-EFFICIENT VGGT IMPLEMENTATION

As illustrated in Fig. 2, the network structure of VGGT comprises three main components: per-frame
DINO-based patch embedding extractor, stacked transformer layers alternating between global and
frame-wise attention (i.e., AA layers), and a decoder for camera parameter regression and dense
predictions (Wang et al., 2025a). Although VGGT contains 24 AA layers, only the output features
from layers 4, 11, 17, and 23 are utilized for dense prediction. To eliminate redundancy, we discard
intermediate outputs from other layers, thereby reducing VRAM consumption. This modification
increases image throughput from 150 to 600 images, and we refer to this variant as VGGT−.

Another source of redundancy lies in data precision. While automatic mixed precision is enabled,
the majority of operations and tensor storage still default to Float32. We observe that switching
to BFloat16, except for MLP in heads, introduces no noticeable degradation in performance. In
contrast, it reduces the peak GPU memory usage by up to 74%, leading to a substantial improvement
in inference throughput. Moreover, since both DINO feature extraction and frame-wise attention
involve only intra-frame computation, frames can be processed asynchronously. Consequently, N
input images can be divided into ⌈N/S⌉ chunks, which are sequentially processed. By selecting an
appropriate chunk size S, peak memory usage in these modules can be effectively controlled. For
convenience, this version is named as VGGT−−.
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3.3 CAMERA PARAMETERS GLOBAL ALIGNMENT (GA)

After the feedforward inference of VGGT, we obtain estimated camera parameters {Kn,Rn, tn}N ,
where for the n-th camera, Kn denotes the intrinsic matrix, while Rn and tn represent the rotation
matrix and translation vector of the extrinsic matrix, respectively. These parameters can be refined
using image correspondences by minimizing the epipolar distance loss:

LEG =
∑
m

∑
k

wk em,k /
∑
m

∑
k

wk, em,k = x′
kFmxk, (2)

where em,k is the epipolar distance for the k-th correspondence in the m-th image pair, x′
k and xk

are the corresponding keypoints, and Fm is the fundamental matrix derived from the paired cameras.
The weights wk reflect the reliability of each correspondence, making their estimation crucial for
effective optimization.

Not all C2
N image pairs have overlapping fields of view. Following (Jeong et al., 2021), we restrict

candidate pairs to those with view angles below a certain threshold. For these pairs, VGGT’s track-
ing head can provide correspondences and confidence scores. However, as shown in Tab. 3, these
predictions are insufficiently reliable for camera refinement. We therefore adopt XFeat (Potje
et al., 2024), a recent neural feature matcher known for its efficiency. While XFeat provides accu-
rate matches, it does not supply correspondence weights wk. Using VGGT’s depth confidence as a
proxy also proves suboptimal (cf. Tab. 3).

To address this issue, we propose an adaptive weighting strategy. Intuitively, when both the 3D foun-
dation model and the matching model provide reliable estimates, most em,k values should cluster
near zero, and such correspondences should be assigned higher weights. Conversely, correspon-
dences with large em,k are more likely to be outliers and should be down-weighted. The “Global
Alignment” panel in Fig. 2 illustrates a typical histogram of em,k with the x-axis limited to [0, 20].
As observed, em,k exhibits a long-tail distribution, which aligns naturally with this intuition. Ac-
cordingly, we first compute em,k using VGGT-predicted camera parameters as defined in Eq. (2),
and then estimate the adaptive weights as:

wk =

(
f(em,k)

Avg(f(em,k))

)α

, (3)

where f is the probability density function approximated via histogram, Avg(f(em,k)) denotes the
average density over all em,k, and α is empirically set to 0.5. As validated in Tab. 3, this weighting
scheme enables more efficient convergence during camera optimization.

Finally, we adapt the learning rate to different convergence regimes. When VGGT’s initialization
is accurate, a small learning rate suffices for fine alignment. However, in challenging cases, such a
setting fails to provide adequate updates. To adaptively control learning, we use the median epipolar
distance as an indicator and adjust the learning rate according to the following empirical rule:

lr =


lr0, if Median(em,k) < b1,

lr1, if b1 < Median(em,k) < b2,

lr2, if Median(em,k) > b2,

(4)

where lr0, lr1, lr2 and the bounds b1, b2 are specified in Sec. 4.1. As shown in Tab. 3, this adaptive
strategy is critical for ensuring robust convergence in camera parameter optimization.

3.4 3DGS TRAINING WITH IMPERFECT POSES

The global alignment procedure in Sec. 3.3 substantially improves the accuracy of estimated cam-
era parameters, thereby facilitating convergence of 3DGS training. Nonetheless, the performance
gap relative to COLMAP remains, which is detrimental for initialization-sensitive models such as
vanilla 3DGS (cf. Tab. 4). To mitigate this issue, we adopt MCMC-3DGS, which offers improved
robustness under noisy or imperfect poses.
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Figure 3: Qualitative comparison of rendering results. 3DGS† here means 3DGS trained with
COLMAP initialization, and is mainly for reference. Here, Apple is from CO3Dv2 dataset, Gar-
den and Stump are from MipNeRF360 dataset, Ignatius and Caterpillar are from TnT dataset.

In addition, we adopt a joint optimization scheme in which residual camera poses are optimized
alongside Gaussian parameters under photometric supervision. Concretely, we estimate the residual
translation ∆tn ∈ R3 and residual rotation ∆rn ∈ R6. Following (Zhou et al., 2019), the 6D
rotation representation ∆rn is converted into a residual rotation matrix ∆Rn ∈ R3×3, which is then
applied to refine Rn. In addition, we leverage the correspondence weights introduced in Sec. 3.3
to select reliable initialization points, providing a stronger starting configuration for 3DGS training.
As shown in Tab. 4, this strategy leads to consistently improved performance.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets & Metrics. We evaluate our model on widely used multi-view reconstruction benchmarks,
including MipNeRF360 (Barron et al., 2022), Tanks and Temple (TnT) (Knapitsch et al., 2017), and
CO3Dv2 (Reizenstein et al., 2021), with maximum image sequence lengths of 311, 1106, 202 and
scene numbers of 9, 5, 5, respectively. MipNeRF360 is employed for our ablation studies. We
follow (Wang et al., 2025a) for pose and point map estimation. Pose accuracy is evaluated using the
standard AUC@30 metric, which integrates Relative Translation Error (RTE) and Relative Rotation
Error (RRE). RTE and RRE compute the relative angular errors in translation and rotation for each
image pair. We note that AUC@30 is not order-invariant and introduce a minor modification to
address this; further details are provided in the Appendix B. Point map quality is measured using
Chamfer Distance, alongside accuracy and completeness metrics. For multi-view reconstruction, we
adhere to the dataset splits and training view resolutions reported in prior works (Kerbl et al., 2023;
Fu et al., 2024). Rendering quality is assessed via PSNR, SSIM, and LPIPS. For computational
efficiency, we report both runtime and VRAM usage measured on a 40G A100 GPU.

Implementation Details. In our experiments, the chunk size S for the frame-wise operation de-
scribed in Sec. 3.2 is set to 128. For the global alignment procedure in Sec. 3.3, the angle-of-view
threshold is set to 30 degrees. The learning rates lr0, lr1, and lr2 are configured to 5×10−4, 1×10−3,
and 1 × 10−2, respectively, while the parameters b1 and b2 are set to 2.5 and 7.5. The maximum
number of correspondences per image pair is limited to 4096, and the optimization is run for 300
iterations. When extracting COLMAP results, only matched points with weights exceeding 0.3 are
retained. During MCMC-3DGS training, the maximum number of Gaussians per scene is matched
to that of the vanilla 3DGS to ensure fairness. Pose embeddings are initialized with a learning rate of
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Table 1: Comparison with SOTA methods on rendering quality. † means initialized with COLMAP.
Note that for fairness, 3RGS is also trained on predictions from our VGGT−− with GA. The best
performance of each part is in bold.

MipNeRF360 Tanks and Temple CO3Dv2

Model SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓
3DGS† 0.8148 27.39 0.1849 0.8509 24.85 0.1550 0.9379 32.58 0.0954
MCMC† 0.8357 27.91 0.1536 0.8674 25.76 0.1391 0.9407 33.21 0.0968

MCMC 0.5484 22.19 0.2822 0.6789 21.42 0.2778 0.7121 25.71 0.2008
CF-3DGS 0.2344 12.38 0.7186 0.3914 12.19 0.6082 0.6110 20.18 0.4354
HT-3DGS 0.3796 14.79 0.6691 0.4508 13.83 0.5850 0.8326 28.28 0.2298
3RGS 0.7128 25.39 0.2158 0.7497 21.47 0.3002 0.8781 31.07 0.1283
Ours 0.7821 26.40 0.1774 0.8419 24.77 0.1676 0.9105 31.85 0.1128

Table 2: Comparison with SOTA methods on pose estimation. The units for RRE and RTE are
degrees. Note that for fairness, 3RGS is also trained on predictions from our VGGT−− with GA.
The best performance of each part is in bold. ”OOM” here means fail to run on all scenes due to
Out-of-Memory error.

MipNeRF360 Tanks and Temple CO3Dv2

Model RRE↓ RTE↓ AUC@30↑ RRE↓ RTE ↓ AUC@30↑ RRE↓ RTE↓ AUC@30↑
MASt3R-Sfm 17.18 10.25 0.718 21.02 14.10 0.687 11.72 15.32 0.618
π3 3.244 3.470 0.889 OOM OOM OOM 0.924 1.719 0.956
VGGT−− 1.094 1.759 0.951 2.034 1.891 0.953 3.035 4.659 0.841
VGGT−−, +GA 0.678 0.686 0.986 1.783 1.479 0.967 2.002 2.811 0.906
CF-3DGS 104.0 56.45 0.001 110.9 55.20 0.006 15.2 21.5 0.336
HT-3DGS 93.69 56.55 0.003 100.0 51.87 0.010 12.30 12.25 0.501
3RGS 0.605 0.484 0.991 4.855 6.762 0.846 1.972 2.583 0.911
Ours 0.601 0.484 0.992 1.738 1.259 0.971 1.984 2.687 0.909

1× 10−4 and decayed exponentially by a factor of 0.1, while the learning schedule for other 3DGS
attributes follows (Kheradmand et al., 2024). During rendering quality assessment, we would freeze
trained Gaussians and tune the pose embedding for the test view and minimize the photometric loss,
following practice of (Huang et al., 2025b). The tuning iteration is 10,000 for TnT and 5,000 for
other datasets, while the other setting of learning schedule aligns with the training progress.

Baselines. For 3D key attributes prediction, we compare the performance of MASt3R-SfM (Duis-
terhof et al., 2025), π3 (Wang et al., 2025c), and VGGT (Wang et al., 2025a). For MASt3R-SfM, we
employ the retrieval mode in scene graph construction to achieve a balance between accuracy and
efficiency. For COLMAP-free 3DGS training, we consider CF-3DGS (Fu et al., 2024), HT-3DGS
(Ji & Yao, 2025), 3RGS (Huang et al., 2025b), and MCMC-3DGS (Kheradmand et al., 2024). To
ensure a fair comparison, we replace the initial poses and point cloud in 3RGS with our globally
aligned, higher-accuracy results.

4.2 COMPARISON WITH SOTA METHODS

In Tab. 1, we compare rendering performance against recent advances and include results with
COLMAP initialization as an upper-bound reference. Our model achieves state-of-the-art perfor-
mance, as further confirmed by the qualitative results in Fig. 3, which show that our method more
effectively suppresses blurry artifacts and floaters while preserving fine-grained textures. It is worth
noting that the rendering quality of CF-3DGS on CO3Dv2 is noticeably worse than reported in its
original paper, likely due to reproducibility issues documented in its repository1.

In Tab. 2, we compare pose estimation accuracy. The results demonstrate that both our global align-
ment and joint optimization strategies consistently improve performance, surpassing all previous

1https://github.com/NVlabs/CF-3DGS/issues/7
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approaches that jointly optimize poses and 3DGS. We also evaluate the pose accuracy of 3D foun-
dation models and provide trajectory visualizations in Fig. 4. Our model exhibits closer alignment
with ground-truth trajectories, achieving the highest accuracy on MipNeRF360 and TnT, and ranking
second on CO3Dv2.

4.3 ABLATION

Table 3: Ablation on model components in pose and point map estimation. The experiments are con-
ducted on MipNeRF360 (Barron et al., 2022). ”-XFeat” here means replacing XFeat with tracking
predicted by VGGT itself. ”- PDF Weight” means using confidence predicted by VGGT to replace
adaptive weight proposed in Sec. 3.3. Computation costs are evaluated on 40G A100.

Pose Estimation Point Map Estimation Cost

Model RRE(◦)↓ RTE(◦)↓ AUC@30↑ Acc.↓ Comp.↓ Overall↓ T(min) Mem.(GB)

VGGT OOM OOM OOM OOM OOM OOM OOM OOM
VGGT− 1.090 1.740 0.951 0.064 0.051 0.058 0.98 28.87
VGGT−− 1.094 1.759 0.951 0.063 0.050 0.057 1.29 9.66
VGGT−−, +BA 0.640 0.392 0.994 0.064 0.037 0.050 157 24.26

VGGT−−, +GA 0.652 0.643 0.988 0.069 0.039 0.054 1.78 11.12
- XFeat 2.096 2.250 0.920 0.220 0.184 0.202 4.46 13.49
- Adaptive LR 0.732 0.751 0.984 0.064 0.037 0.051 1.78 11.12
- PDF Weight 2.705 2.970 0.892 0.108 0.058 0.083 1.88 11.12
- Rand Order 0.681 0.691 0.986 0.068 0.040 0.054 1.78 11.12
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Figure 4: Qualitative comparison of estimated trajectories. Here we also report the Root Mean
Square Error (RMSE) of the Absolute Trajectory Error (ATE) (in meters) (Matsuki et al., 2024).
The color bar indicates trajectory distance. We recommend zooming in for better details.

First, we ablate the effect of different modules on 3D key attribute estimation. The primary reduc-
tion in computational overhead comes from redundant feature elimination and precision adjustment,
which together lower VRAM usage by 83% on MipNeRF360. Batched attention further reduces
memory by over 1 GB when scaling to more than 800 images. Combined these modifications to-
gether, the inference throughput is pushed to 1000+ images, as shown in Fig. 1. Noticeably, these
optimizations have only a negligible impact on prediction accuracy, as indicated in Tab. 3.

Second, we examine strategies to enhance VGGT output quality. Replacing XFeat with the VGGT
tracking head decreases AUC@30 by 6.8 points and increases Chamfer Distance by nearly fourfold.
Similarly, leveraging VGGT-derived depth confidence to reweight XFeat correspondences results
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Table 4: Ablation on model components in multi-view reconstruction. The experiments are con-
ducted on MipNeRF360 (Barron et al., 2022). The best performance of each metric is in bold.

Initialization Train Set Test Set

Model Pose Point Map SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓
3DGS COLMAP COLMAP 0.8869 29.58 0.1427 0.7194 27.39 0.1849
MCMC COLMAP COLMAP 0.9041 30.17 0.1231 0.8357 27.91 0.1536
+Pose Opt. COLMAP COLMAP 0.9042 30.19 0.1228 0.8359 27.95 0.1537

3DGS VGGT−− Rand. 500K 0.7284 23.95 0.2830 0.5321 21.10 0.3466
3DGS VGGT−−, +GA Rand. 500K 0.7538 25.00 0.2471 0.5675 22.23 0.3058
MCMC VGGT−−, +GA Rand. 500K 0.8178 26.41 0.1974 0.5563 22.37 0.2795
+Pose Opt. VGGT−−, +GA Rand. 500K 0.8965 29.25 0.1229 0.7731 26.28 0.1823
+Pose Opt. VGGT−−, +GA Rand. 500K 0.8965 29.25 0.1229 0.7731 26.28 0.1823
+Pose Opt. VGGT−−, +GA Filtered. 500K 0.8794 28.85 0.1473 0.7620 25.88 0.2005
+Pose Opt. VGGT−−, +GA Matched Points 0.8966 29.59 0.1314 0.7821 26.40 0.1774
+Pose Opt. VGGT−, +BA VGGT−, +BA 0.8948 29.23 0.1301 0.7765 26.33 0.1786

Groundtruth Residuals of Room

Learned Residuals of Room

3DGS†, SSIM=0.789 Ours, SSIM=0.466

MCMC†, SSIM=0.579 Ours, SSIM=0.371

Groundtruth Residuals of Flowers

Learned Residuals of Flowers

Figure 5: Bad case analysis. The blue and red histograms respectively correspond to rotation and
translation residual distribution. The right part shows blurry artifacts caused by inaccurate poses.

in substantial performance degradation. In contrast, incorporating our adaptive learning rate yields
consistently higher accuracy. Moreover, we observe that with permutation-equivariant AUC@30, a
random input order still yields a slight performance gain, consistent with the findings of (Wang et al.,
2025c). Besides, we also scale the official Bundle Adjustment (BA) strategy to hundreds of images
by applying our architectural optimizations to VGG-SfM (Wang et al., 2024a). While this achieves
higher accuracy, it requires over two hours to complete, and as shown in Tab. 4, its initialization
does not improve NVS quality, confirming the superior efficiency of our strategy.

Finally, we ablate design choices for training high-quality 3DGS. As shown in Tab. 4, MCMC
is more effective than vanilla 3DGS under imperfect initialization, and pose optimization proves
essential for stable convergence and high rendering quality. Among initialization strategies, point
clouds derived from high-confidence correspondences achieve the best performance. Limited by
pages, we put additional ablations in Tab. 5 in the Appendix.

4.4 DISCUSSION

Although our model achieves state-of-the-art performance, a noticeable gap remains compared to
3DGS trained with COLMAP initialization, as shown in Tab. 1. Interestingly, Tab. 4 reveals that
on the training set, our model even surpasses COLMAP-initialized 3DGS in rendering quality, yet
its performance on the test set lags behind, suggesting a clear overfitting issue. This highlights
the inherently ill-posed nature of the problem. And without reliable initialization, the optimization
process is prone to getting trapped in local minima of the highly non-convex loss landscape. We
also experimented with adding depth supervision (cf. Tab. 5), but found little improvement.

Besides, as illustrated in Tab. 2, even after joint optimization, pose accuracy still falls short of
COLMAP. We further compare the learned camera pose residuals with ground-truth. The visual-
ization is included in Fig. 5. We observe that while most residuals cluster near zero—indicating
accurately predicted poses—the model struggles to sufficiently correct poses with large deviations.
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Another noteworthy finding in Tab. 2 is that although VGGT substantially outperforms π3 on Mip-
NeRF360, it is surpassed on CO3Dv2 by a considerable margin. This discrepancy suggests that the
generalization ability of 3D foundation models remains an open challenge.

5 CONCLUSIONS

In this paper, we investigated the potential of applying 3D Foundation Models to dense novel view
synthesis and identified two key challenges: the poor scalability in computational overhead and
insufficient prediction accurarcy for subsequent radiance field fitting. To address these obstacles, we
introduced VGGT-X, which integrates a memory-efficient VGGT implementation, adaptive global
alignment, and robust 3DGS training strategies. Our approach substantially narrows the performance
gap with COLMAP-initialized counterparts. Beyond these improvements, our analysis also sheds
light on the remaining limitations and outlines promising directions for advancing both 3DFMs and
NVS frameworks. We hope our findings provide valuable insights toward building fast, reliable, and
fully COLMAP-free dense NVS systems.
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A ADDITIONAL ABLATIONS

Table 5: Additional ablation on model components in multi-view reconstruction. The experiments
are conducted on MipNeRF360 (Barron et al., 2022). This table showcases the aborted model de-
signs. The best performance of each metric is in bold. The ”Baseline” denotes MCMC-3DGS
equipped with pose embedding. The modification of each following row is independent of the oth-
ers.

Initialization Train Set Test Set

Model Pose Point Map SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓
Baseline Ours Matched Points 0.8966 29.59 0.1314 0.7821 26.40 0.1774
w MLP Ours Matched Points 0.8753 28.60 0.1436 0.7492 25.83 0.1934
w depth Ours Matched Points 0.8851 28.85 0.1415 0.7628 25.94 0.1954
w 2× pose lr Ours Matched Points 0.9044 30.02 0.1243 0.7740 26.16 0.1737
w Epi. Loss Ours Matched Points 0.8964 29.55 0.1318 0.7795 26.31 0.1780
w Epi. Loss VGGT* VGGT* 0.8499 27.21 0.1806 0.6440 23.22 0.2572

Here we provide additional ablation studies in Tab. 5. We experimented with design choices like
MLP-based pose embedding learning (Huang et al., 2025b), epipolar loss during 3DGS training,
and depth supervision. But none of them bring clear benefits to the rendering quality. We also tried
to double learning rate and encourage to learn a broader distribution, but it turns out to aggregate the
overfitting phenomenon. Moreover, the last row of Tab. 5 shows that integrating global alignment
into GS training, rather than treating it as a separate process, leads to suboptimal results. Therefore,
we adopt global alignment as an independent component.

B PERMUTATION-EQUIVARIANT AUC@30

In this section, we analyze why the conventional AUC@30 metric is sensitive to the input image
order and propose a simple yet effective modification to address this issue. AUC@30 first com-
putes relative poses for all C2

N image pairs. Comparing the relative poses from ground truth and
predictions, the relative rotation and translation errors can be derived for AUC@30 calculation.
Specifically, for two images indexed by i and j (with i < j) and their corresponding extrinsics, the
relative pose is computed as:

∆Eij = Ei
−1Ej =

(
Ri

T −Ri
T ti

0 1

)(
Rj tj
0 1

)
=

(
Ri

TRj Ri
T (tj − ti)

0 1

)
. (5)

However, if the image order is permuted and j precedes i, the relative pose becomes:

∆Eji =

(
Rj

TRi Rj
T (ti − tj)

0 1

)
. (6)

While the orthogonality of Ri and Rj ensures that Rj
TRi = Ri

TRj , it is clear that Ri
T (tj − ti) ̸=

Rj
T (ti− tj). Consequently, the relative translation angle—and hence AUC@30—is sensitive to the

ordering of input images, which can lead to differences exceeding five points. To mitigate this, we
include both Eij and Eji in the relative pose sequence instead of only Eij . This modification pre-
serves the relative rotation error while introducing permutation equivariance to relative translation
error and AUC@30, resulting in a more robust and fair evaluation of pose estimation accuracy.

C LARGE LANGUAGE MODEL USAGE

We used LLMs solely as a writing assistant to improve grammar, clarity, and conciseness of the
manuscript. The research ideas, technical contributions, experiments, and analyses were entirely
conceived and conducted by the authors. No content was generated by LLMs beyond language
refinement, and all scientific claims and results are the sole responsibility of the authors.
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